Videojuegos educativos y pensamiento científico: análisis a partir de los componentes cognitivos, metacognitivos y motivacionales
DOI:
https://doi.org/10.5294/edu.2018.21.3.2Palabras clave:
Metacognición, motivación, resolución de problemas, tecnología educacional, videojuegoResumen
Educational Videogames and Scientific Thinking: Analysis from the Cognitive, Metacognitive and Motivational Components
Videogames educativos e pensamento científico: análise a partir dos componentes cognitivos, metacognitivos e motivacionais
Se presenta una revisión de literatura con el objetivo de identificar las diferentes posturas en investigación sobre el uso de los videojuegos en contextos educativos. Estas posturas fueron diferenciadas a partir de dos categorizaciones. En primer lugar, se categorizaron aspectos privilegiados por las investigaciones para el favorecimiento del desarrollo del pensamiento científico, como aspectos cognitivos, metacognitivos y/o motivacionales. En segundo lugar, se clasificó el tipo de representación que las investigaciones asumían al integrar videojuegos en la educación. Esta clasificación derivó en el planteamiento de dos niveles de representación. El nivel de integración, que hace referencia a la concepción del uso de videojuegos a partir de su potencial para presentar contenidos, transmitir y comunicar información, y el nivel de reorientación, que se refiere a una concepción donde el videojuego no es el foco, sino su potencial para fomentar habilidades de alto orden, construir conocimiento y generar interacciones en un contexto educativo. Como conclusión, se hace referencia a la importancia de tener en cuenta bajo qué representación, condiciones y características se hace uso de un videojuego en contextos educativos, puesto que eso podrá favorecer o no la potencialidad del uso de un videojuego como herramienta cultural en la educación.
Para citar este artículo / To reference this article / Para citar este artigo
Montes-González, J. A., Ochoa-Angrino, S., Baldeón-Padilla, D. S. y Bonilla-Sáenz, M. (2018). Videojuegos educativos y pensamiento científico: análisis a partir de los componentes cognitivos, metacognitivos y motivacionales. Educación y Educadores, 21(3), 388-408. DOI: 10.5294/edu.2018.21.3.2
Recibido: 19/04/2018
Aprobación: 11/11/2018
Descargas
Citas
Alfageme, B. y Sánchez, P. (2002). Aprendiendo habilidades con videojuegos. Revista Científica de Comunicación y Educación, 19. Recuperado de http://mail.quadernsdigitals.net/datos_web/hemeroteca/r_2/nr_664/a_8927/8927.pdf
Anderson, A., Brunner, C., Culp, K. M., Diamond, J., Lewis, A. y Martin, W. (2009). Using microgenetic methods to investigate problem solving in video games. En W. Huber (presidencia), Breaking new ground: Innovation in games, play, practice and theory. Conferencia llevada a cabo en Digital Games Reaserch association (digra), West London, Reino Unido.
Anderson, J. y Barnett, M. (2011). Using video games to support pre-service elementary teachers learning of basic physics principles. Journal of Science Education and Technology, 20(4), 347-362. DOI: 10.1007/s10956-010-9257-0
Annetta, L. A. (2008). Video games in education: Why they should be used and how they are being used. Theory into Practice, 47(3), 229-239. Recuperado de https://www.jstor.org/stable/40071547
Barab, S. y Dede, C. (2007). Games and immersive participatory simulations for science education: An emerging type of curricula. Journal of Science Education and Technology, 16(1), 1-3. DOI: 10.1007/s10956-007-9043-9
Barzilai, S. y Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79. DOI: 10.1016/j.compedu.2013.08.003
Cheng, M., Su, T., Huang, W. y Chen, J. (2014). An educational game for learning human immunology: What do students learn and how do they perceive? British Journal of Educational Technology, 45(5), 820-833. DOI: 10.1111/bjet.12098
Clark, D., Nelson, B., Chang, H., Martínez-Garza, M., Slack, K. y D’Angelo, C. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57(3), 2178-2195. DOI: 10.1016/j.compedu.2011.05.007
Csíkszentmihályi, M. (2008). Flow: the psychology of optimal experience. New York: Harper Perennial.
Flavell, J. H. (1979). Metacognition and cognitive monitoring. A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906-911. DOI: 10.1037/0003-066X.34.10.906
Halpern, D. F., Millis, K., Graesser, A. C., Butler, H., Forsyth, C. y Cai, Z. (2012). Operation ARA: A computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity, 7, 93-100. DOI:10.1016/j.tsc.2012.03.006
Hamari, J. y Koivisto, J. (2014). Measuring flow in gamification: dispositional flow Scale-2. Computers in Human Behavior, 40, 133-143. DOI: 10.1016/j.chb.2014.07.048
Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J. y Edwards, T. (2016). Challenging games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54, 170-179. DOI: 10.1016/j.chb.2015.07.045
Herrero, D., Del Castillo, H., Monjelat, N., García-Varela, A., Checa, M. y Gómez, P. (2014). Evolution and natural selection: learning by playing and reflecting. Journal of New Approaches in Educational Research, 3(1), 26. DOI: 10.7821/naer.3.1.26-33
Holbert, N. y Wilensky, U. (2014). Constructible authentic representations: Designing video games that enable players to utilize knowledge developed in-game to reason about science. Technology, Knowledge and Learning 19(1-2), 53-79. DOI: 10.1007/s10758-014-9214-8
Hooper, S. y Rieber, L. P. (1995). Teaching with technology. Teaching: Theory into Practice, 20(13), 154-170. Recuperado de https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1241258
Hou, H. y Li, M. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior DOI: 10.1016/j.chb.2013.07.052
Huffaker, D. A. y Calvert, S. L. (2003). The new science of learning: Active learning, metacognition, and transfer of knowledge in e-learning applications. Journal of Educational Computing Research, 29(3), 325-334. DOI: 10.2190/4T89-30W2-DHTM-RTQ2
Hung, C., Sun, J. C. y Yu, P. (2015). The benefits of a challenge: student motivation and flow experience in tablet-PC-game-based learning. Interactive Learning Environments, 23(2), 172-190. DOI: 10.1080/10494820.2014.997248
Jansz, J., Avis, C. y Vosmeer, M. (2010). Playing The Sims2: An exploration of gender differences in players’ motivations and patterns of play. New Media & Society, 12(2), 235-251. DOI: 10.1177/1461444809342267
Jonassen, D. H. (2011). Design problems for secondary students. National Center for Engineering and Technology Education. Recuperado de https://files.eric.ed.gov/fulltext/ED537388.pdf
Kiili, K., De Freitas, S., Arnab, S. y Lainema, T. (2012). The design principles for flow experience in educational games. Procedia Computer Science, 15, 78-91. DOI: 10.1016/j.procs.2012.10.060
Kiili, K., Perttula, A., Lindstedt, A., Arnab, S. y Suominen, M. (2014). Flow experience in evaluating physically activating collaborative serious games. International Journal of Serious Games, 1(3), 35-49. DOI: 10.17083/ijsg.v1i3.23
Kim, B., Park, H. y Baek, Y. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers and Education, 52(4), 800-810. DOI: 10.1016/j.compedu.2008.12.004
King, D., Delfabbro, P. y Griffiths, M. (2009). The psychological study of video game players: Methodological challenges and practical advice. International Journal of Mental Health and Addiction, 7(4), 555-562. DOI: 10.1007/s11469-009-9198-0
Ko, S. (2002). An empirical analysis of children’s thinking and learning in a computer game context. Educational Psychology, 22(2), 219-233. DOI: 10.1080/01443410120115274
Kuhn, D. (2005). Education for thinking. Londres: Harvard University Press.
Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824. DOI: 10.1002/sce.20395
Kuhn, D. (2011). What is scientific thinking and how does it develop? En Handbook of Childhood Cognitive Development (pp. 497-523). Oxford, UK: Wiley-Blackwell.
Kuhn, D. y Pease, M. (2008). What needs to develop in the development of inquiry skills? Cognition and Instruction, 26(4), 512-559. DOI: 10.1080/07370000802391745
Lester, J., Spires, H., Nietfeld, J., Minogue, J., Mott, B. y Lobene, E. (2014). Designing game-based learning environments for elementary science education: A narrative-centered learning perspective. Information Sciences, 264, 4-18. DOI: 10.1016/j.ins.2013.09.005
Marra, R. M., Jonassen, D. H., Palmer, B. y Luft, S. (2014). Why problem-based learning works: Theoretical foundations. Journal on Excellence in College Teaching, 25(3-4), 221-238. Recuperado de http://celt.muohio.edu/ject/issue.php?v=25&n=3%20and%204
Martí, E. (2003). Representar el mundo externamente. Madrid: Aprendizaje.
McGonigal, J. (2011). Reality is broken: Why games make us better and how they can change the world. Nueva York: Penguin.
Miller, L., Chang, C., Wang, S., Beier, M. y Klisch, Y. (2011). Learning and motivational impacts of a multimedia science game. Computers & Education, 57(1), 1425-1433. DOI: 10.1016/j.compedu.2011.01.016
Montes, J. A. y Ochoa, S. (2006). Apropiación de las tecnologías de la información y comunicación en cursos universitarios. Acta Colombiana de Psicología, 9(2). Recuperado de https://www.redalyc.org/articulo.oa?id=79890209
Montes, J., van Dijk, M., Puche, R. y van Geert, P. (2017). Trajectories of scientific reasoning: A microgenetic study on children’s inquiry functioning. Journal for Person-Oriented Research, 3(2), 67-85. DOI: 10.17505/jpor.2017.07
Morris, B., Croker, S., Zimmerman, C., Gill, D. y Romig, C. (2013). Gaming science: the “Gamification” of scientific thinking. Frontiers in Psychology, 4(607), 1-16. DOI: 10.3389/fpsyg.2013.00607
Neulight, N., Kafai, Y., Kao, L., Foley, B. y Galas, C. (2007). Children’s participation in a virtual epidemic in the science classroom: Making connections to natural infectious diseases. Journal of Science Education and Technology, 16(1), 47. DOI: 10.1007/s10956-006-9029-z
Olson, C. K. (2010). Children’s motivations for video game play in the context of normal development. Review of General Psychology, 14(2), 180-187. DOI: 10.1037/a0018984
Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1-12. DOI: 10.1016/j.compedu.2008.06.004
Przybylski, A. K., Rigby, S. y Ryan, R. (2010). A motivational model of video game engagement. Review of General Psychology 14(2), 154-166. DOI: 10.1037/a0019440
Przybylski, A. K., Ryan, R. M. y Rigby, C. S. (2009). The motivating role of violence in video games. Personality and Social Psychology Bulletin, 35, 243-259. DOI: 10.1177/0146167208327216
Puche-Navarro, R. y Ordóñez, O. (2003). Pensar, experimentar y volver a pensar: Un estudio sobre el niño que experimenta con catapultas. El niño que piensa y vuelve a pensar (pp. 88-177). Cali: Universidad del Valle.
Qin, H., Rau, P.-L. P. y Salvendy, G. (2010). Effects of different scenarios of game difficulty on player immersion. Interacting with Computers, 22, 230-239. DOI: 10.1016/j.intcom.2009.12.004
Quintanal Pérez, F. (2016). Aplicación de herramientas de gamificación en física y química de secundaria. Opción, 32(12), 327-348. Recuperado de https://www.redalyc.org/html/310/31048903016/
Rice, J. (2007). New media resistance: Barriers to implementation of computer video games in the classroom. Journal of Educational Multimedia and Hypermedia, 16(3), 249-261. Recuperado de https://www.learntechlib.org/primary/p/24378/
Ritterfeld, U. y Weber, R. (2006). Video games for entertainment and education. Playing video games: Motives, responses, and consequences (pp. 399-413). Nueva York-Londres: Routledge.
Ryan, R. M., Rigby, C. S. y Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30, 347-363. DOI: 10.1007/s11031-006-9051-8
Schulze, J., Martin, R., Finger, A., Henzen, C., Lindner, M., Pietzsch, K., … Seppelt, R. (2015). Design, implementation and test of a serious online game for exploring complex relationships of sustainable land management and human well-being. Environmental Modelling and Software, 65, 58-66. DOI: 10.1016/j.envsoft.2014.11.029
Schaffer, O. y Fang, X. (2015). Finding flow with games: Does Immediate Progress Feedback Cause Flow? Paper presented at the Twenty-first Americas Conference of Information Systems, Puerto Rico.
Shaffer, D., Squire, K., Halverson, R. y Gee, J. (2005). Video games and the future of learning. Phi Delta Kappan, 87(2), 105-111. Recuperado de https://academiccolab.org/resources/gappspaper1.pdf
Shernoff, D., Hamari, J. y Rowe, E. (2014). Measuring flow in educational games and gamified learning environments. En World Conference on Educational Media and Technology 2014, Tampere, Finlandía (pp. 2276-2281). Association for the Advancement of Computing in Education.
Squire, K. (2008). Video game-based learning: An emerging paradigm for instruction. Performance Improvement Quarterly, 21(2), 7-36. Recuperado de https://www.learntechlib.org/p/113514/
Torrance, H. (2007). Assessment as learning? How the use of explicit learning objectives, assessment criteria and feedback in post-secondary education and training can come to dominate learning. Assessment in Education, 14(3), 281-294. DOI: 10.1080/09695940701591867
Valencia-Molina, T., Serna-Collazos, A., Ochoa-Angrino, S., Caicedo-Tamayo, A., Montes-González, J. y Chávez-Vescance, J. (2017). Competencias y estándares TIC desde la dimensión pedagógica: una perspectiva desde los niveles de apropiación de las TIC en la práctica educativa docente. Cali: Pontificia Universidad Javeriana.
Yang, Y. (2012). Building virtual cities, inspiring intelligent citizens: Digital games for developing students’ problem solving and learning motivation. Computers and Education, 59(2), 365-377. DOI: 10.1016/j.compedu.2012.01.012
Zimmerman, B. J. y Schunk, D. H. (eds.) (2012). Self-regulated learning and academic achievement: Theory, research, and practice. Nueva York: Springer Science & Business Media.
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista y sus artículos se publican bajo la licencia CreativeCommons CC BY 4.0 DEED Atribución 4.0 Internacional, usted es libre de: Compartir — copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente. Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente. La licencia no puede revocar estas libertades en tanto usted siga los términos de la licencia.