Videogames educativos e pensamento científico: análise a partir dos componentes cognitivos, metacognitivos e motivacionais

Autores

DOI:

https://doi.org/10.5294/edu.2018.21.3.2

Palavras-chave:

Metacognição, motivação, resolução de problemas, tecnologia educacional, videogame

Resumo

Videojuegos educativos y pensamiento científico: análisis a partir de los componentes cognitivos, metacognitivos y motivacionales

Educational Videogames and Scientific Thinking: Analysis from the Cognitive, Metacognitive and Motivational Components

Apresenta-se uma revisão de literatura com o objetivo de identificar as diferentes posturas em pesquisa sobre o uso dos videogames em contextos educativos. Essas posturas foram diferenciadas a partir de duas categorizações. Em primeiro lugar, foram categorizados os aspectos privilegiados pelas pesquisas para o favorecimento do desenvolvimento do pensamento científico, como os cognitivos, metacognitivos e/ ou emocionais. Em segundo lugar, classificou-se o tipo de representação que as pesquisas assumiam ao integrar videogames na educação. Essa classificação resultou em uma abordagem de dois níveis de representação: o nível de integração, que se refere à concepção do uso de videogames a partir de seu potencial para apresentar conteúdos, transmitir e comunicar informação; e o nível de reorientação, que se refere a uma concepção na qual o videogame não é o foco, mas sim seu potencial para fomentar habilidades de alta ordem, construir conhecimento e gerar interações em um contexto educativo. Conclui-se que é importante decidir sob quais representações, condições e características se usa um videogame em contextos educativos, visto que isso poderá favorecer ou não o potencial desse recurso como ferramenta cultural na educação.

Para citar este artículo / To reference this article / Para citar este artigo

Montes-González, J. A.Ochoa-Angrino, S.Baldeón-Padilla, D. S. y Bonilla-Sáenz, M. (2018). Videojuegos educativos y pensamiento científico: análisis a partir de los componentes cognitivos, metacognitivos y motivacionales. Educación y Educadores, 21(3), 388-408. DOI: 10.5294/edu.2018.21.3.2

Recibido: 19/04/2018

Aprobación: 11/11/2018

Downloads

Não há dados estatísticos.

Referências

Alfageme, B. y Sánchez, P. (2002). Aprendiendo habilidades con videojuegos. Revista Científica de Comunicación y Educación, 19. Recuperado de http://mail.quadernsdigitals.net/datos_web/hemeroteca/r_2/nr_664/a_8927/8927.pdf

Anderson, A., Brunner, C., Culp, K. M., Diamond, J., Lewis, A. y Martin, W. (2009). Using microgenetic methods to investigate problem solving in video games. En W. Huber (presidencia), Breaking new ground: Innovation in games, play, practice and theory. Conferencia llevada a cabo en Digital Games Reaserch association (digra), West London, Reino Unido.

Anderson, J. y Barnett, M. (2011). Using video games to support pre-service elementary teachers learning of basic physics principles. Journal of Science Education and Technology, 20(4), 347-362. DOI: 10.1007/s10956-010-9257-0

Annetta, L. A. (2008). Video games in education: Why they should be used and how they are being used. Theory into Practice, 47(3), 229-239. Recuperado de https://www.jstor.org/stable/40071547

Barab, S. y Dede, C. (2007). Games and immersive participatory simulations for science education: An emerging type of curricula. Journal of Science Education and Technology, 16(1), 1-3. DOI: 10.1007/s10956-007-9043-9

Barzilai, S. y Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79. DOI: 10.1016/j.compedu.2013.08.003

Cheng, M., Su, T., Huang, W. y Chen, J. (2014). An educational game for learning human immunology: What do students learn and how do they perceive? British Journal of Educational Technology, 45(5), 820-833. DOI: 10.1111/bjet.12098

Clark, D., Nelson, B., Chang, H., Martínez-Garza, M., Slack, K. y D’Angelo, C. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57(3), 2178-2195. DOI: 10.1016/j.compedu.2011.05.007

Csíkszentmihályi, M. (2008). Flow: the psychology of optimal experience. New York: Harper Perennial.

Flavell, J. H. (1979). Metacognition and cognitive monitoring. A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906-911. DOI: 10.1037/0003-066X.34.10.906

Halpern, D. F., Millis, K., Graesser, A. C., Butler, H., Forsyth, C. y Cai, Z. (2012). Operation ARA: A computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity, 7, 93-100. DOI:10.1016/j.tsc.2012.03.006

Hamari, J. y Koivisto, J. (2014). Measuring flow in gamification: dispositional flow Scale-2. Computers in Human Behavior, 40, 133-143. DOI: 10.1016/j.chb.2014.07.048

Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J. y Edwards, T. (2016). Challenging games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54, 170-179. DOI: 10.1016/j.chb.2015.07.045

Herrero, D., Del Castillo, H., Monjelat, N., García-Varela, A., Checa, M. y Gómez, P. (2014). Evolution and natural selection: learning by playing and reflecting. Journal of New Approaches in Educational Research, 3(1), 26. DOI: 10.7821/naer.3.1.26-33

Holbert, N. y Wilensky, U. (2014). Constructible authentic representations: Designing video games that enable players to utilize knowledge developed in-game to reason about science. Technology, Knowledge and Learning 19(1-2), 53-79. DOI: 10.1007/s10758-014-9214-8

Hooper, S. y Rieber, L. P. (1995). Teaching with technology. Teaching: Theory into Practice, 20(13), 154-170. Recuperado de https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1241258

Hou, H. y Li, M. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior DOI: 10.1016/j.chb.2013.07.052

Huffaker, D. A. y Calvert, S. L. (2003). The new science of learning: Active learning, metacognition, and transfer of knowledge in e-learning applications. Journal of Educational Computing Research, 29(3), 325-334. DOI: 10.2190/4T89-30W2-DHTM-RTQ2

Hung, C., Sun, J. C. y Yu, P. (2015). The benefits of a challenge: student motivation and flow experience in tablet-PC-game-based learning. Interactive Learning Environments, 23(2), 172-190. DOI: 10.1080/10494820.2014.997248

Jansz, J., Avis, C. y Vosmeer, M. (2010). Playing The Sims2: An exploration of gender differences in players’ motivations and patterns of play. New Media & Society, 12(2), 235-251. DOI: 10.1177/1461444809342267

Jonassen, D. H. (2011). Design problems for secondary students. National Center for Engineering and Technology Education. Recuperado de https://files.eric.ed.gov/fulltext/ED537388.pdf

Kiili, K., De Freitas, S., Arnab, S. y Lainema, T. (2012). The design principles for flow experience in educational games. Procedia Computer Science, 15, 78-91. DOI: 10.1016/j.procs.2012.10.060

Kiili, K., Perttula, A., Lindstedt, A., Arnab, S. y Suominen, M. (2014). Flow experience in evaluating physically activating collaborative serious games. International Journal of Serious Games, 1(3), 35-49. DOI: 10.17083/ijsg.v1i3.23

Kim, B., Park, H. y Baek, Y. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers and Education, 52(4), 800-810. DOI: 10.1016/j.compedu.2008.12.004

King, D., Delfabbro, P. y Griffiths, M. (2009). The psychological study of video game players: Methodological challenges and practical advice. International Journal of Mental Health and Addiction, 7(4), 555-562. DOI: 10.1007/s11469-009-9198-0

Ko, S. (2002). An empirical analysis of children’s thinking and learning in a computer game context. Educational Psychology, 22(2), 219-233. DOI: 10.1080/01443410120115274

Kuhn, D. (2005). Education for thinking. Londres: Harvard University Press.

Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824. DOI: 10.1002/sce.20395

Kuhn, D. (2011). What is scientific thinking and how does it develop? En Handbook of Childhood Cognitive Development (pp. 497-523). Oxford, UK: Wiley-Blackwell.

Kuhn, D. y Pease, M. (2008). What needs to develop in the development of inquiry skills? Cognition and Instruction, 26(4), 512-559. DOI: 10.1080/07370000802391745

Lester, J., Spires, H., Nietfeld, J., Minogue, J., Mott, B. y Lobene, E. (2014). Designing game-based learning environments for elementary science education: A narrative-centered learning perspective. Information Sciences, 264, 4-18. DOI: 10.1016/j.ins.2013.09.005

Marra, R. M., Jonassen, D. H., Palmer, B. y Luft, S. (2014). Why problem-based learning works: Theoretical foundations. Journal on Excellence in College Teaching, 25(3-4), 221-238. Recuperado de http://celt.muohio.edu/ject/issue.php?v=25&n=3%20and%204

Martí, E. (2003). Representar el mundo externamente. Madrid: Aprendizaje.

McGonigal, J. (2011). Reality is broken: Why games make us better and how they can change the world. Nueva York: Penguin.

Miller, L., Chang, C., Wang, S., Beier, M. y Klisch, Y. (2011). Learning and motivational impacts of a multimedia science game. Computers & Education, 57(1), 1425-1433. DOI: 10.1016/j.compedu.2011.01.016

Montes, J. A. y Ochoa, S. (2006). Apropiación de las tecnologías de la información y comunicación en cursos universitarios. Acta Colombiana de Psicología, 9(2). Recuperado de https://www.redalyc.org/articulo.oa?id=79890209

Montes, J., van Dijk, M., Puche, R. y van Geert, P. (2017). Trajectories of scientific reasoning: A microgenetic study on children’s inquiry functioning. Journal for Person-Oriented Research, 3(2), 67-85. DOI: 10.17505/jpor.2017.07

Morris, B., Croker, S., Zimmerman, C., Gill, D. y Romig, C. (2013). Gaming science: the “Gamification” of scientific thinking. Frontiers in Psychology, 4(607), 1-16. DOI: 10.3389/fpsyg.2013.00607

Neulight, N., Kafai, Y., Kao, L., Foley, B. y Galas, C. (2007). Children’s participation in a virtual epidemic in the science classroom: Making connections to natural infectious diseases. Journal of Science Education and Technology, 16(1), 47. DOI: 10.1007/s10956-006-9029-z

Olson, C. K. (2010). Children’s motivations for video game play in the context of normal development. Review of General Psychology, 14(2), 180-187. DOI: 10.1037/a0018984

Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1-12. DOI: 10.1016/j.compedu.2008.06.004

Przybylski, A. K., Rigby, S. y Ryan, R. (2010). A motivational model of video game engagement. Review of General Psychology 14(2), 154-166. DOI: 10.1037/a0019440

Przybylski, A. K., Ryan, R. M. y Rigby, C. S. (2009). The motivating role of violence in video games. Personality and Social Psychology Bulletin, 35, 243-259. DOI: 10.1177/0146167208327216

Puche-Navarro, R. y Ordóñez, O. (2003). Pensar, experimentar y volver a pensar: Un estudio sobre el niño que experimenta con catapultas. El niño que piensa y vuelve a pensar (pp. 88-177). Cali: Universidad del Valle.

Qin, H., Rau, P.-L. P. y Salvendy, G. (2010). Effects of different scenarios of game difficulty on player immersion. Interacting with Computers, 22, 230-239. DOI: 10.1016/j.intcom.2009.12.004

Quintanal Pérez, F. (2016). Aplicación de herramientas de gamificación en física y química de secundaria. Opción, 32(12), 327-348. Recuperado de https://www.redalyc.org/html/310/31048903016/

Rice, J. (2007). New media resistance: Barriers to implementation of computer video games in the classroom. Journal of Educational Multimedia and Hypermedia, 16(3), 249-261. Recuperado de https://www.learntechlib.org/primary/p/24378/

Ritterfeld, U. y Weber, R. (2006). Video games for entertainment and education. Playing video games: Motives, responses, and consequences (pp. 399-413). Nueva York-Londres: Routledge.

Ryan, R. M., Rigby, C. S. y Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30, 347-363. DOI: 10.1007/s11031-006-9051-8

Schulze, J., Martin, R., Finger, A., Henzen, C., Lindner, M., Pietzsch, K., … Seppelt, R. (2015). Design, implementation and test of a serious online game for exploring complex relationships of sustainable land management and human well-being. Environmental Modelling and Software, 65, 58-66. DOI: 10.1016/j.envsoft.2014.11.029

Schaffer, O. y Fang, X. (2015). Finding flow with games: Does Immediate Progress Feedback Cause Flow? Paper presented at the Twenty-first Americas Conference of Information Systems, Puerto Rico.

Shaffer, D., Squire, K., Halverson, R. y Gee, J. (2005). Video games and the future of learning. Phi Delta Kappan, 87(2), 105-111. Recuperado de https://academiccolab.org/resources/gappspaper1.pdf

Shernoff, D., Hamari, J. y Rowe, E. (2014). Measuring flow in educational games and gamified learning environments. En World Conference on Educational Media and Technology 2014, Tampere, Finlandía (pp. 2276-2281). Association for the Advancement of Computing in Education.

Squire, K. (2008). Video game-based learning: An emerging paradigm for instruction. Performance Improvement Quarterly, 21(2), 7-36. Recuperado de https://www.learntechlib.org/p/113514/

Torrance, H. (2007). Assessment as learning? How the use of explicit learning objectives, assessment criteria and feedback in post-secondary education and training can come to dominate learning. Assessment in Education, 14(3), 281-294. DOI: 10.1080/09695940701591867

Valencia-Molina, T., Serna-Collazos, A., Ochoa-Angrino, S., Caicedo-Tamayo, A., Montes-González, J. y Chávez-Vescance, J. (2017). Competencias y estándares TIC desde la dimensión pedagógica: una perspectiva desde los niveles de apropiación de las TIC en la práctica educativa docente. Cali: Pontificia Universidad Javeriana.

Yang, Y. (2012). Building virtual cities, inspiring intelligent citizens: Digital games for developing students’ problem solving and learning motivation. Computers and Education, 59(2), 365-377. DOI: 10.1016/j.compedu.2012.01.012

Zimmerman, B. J. y Schunk, D. H. (eds.) (2012). Self-regulated learning and academic achievement: Theory, research, and practice. Nueva York: Springer Science & Business Media.

Publicado

2019-02-27

Como Citar

Montes Gonzáles, J. A., Ochoa Angrino, S., Baldeón Padilla, D. S., & Bonilla Sáenz, M. (2019). Videogames educativos e pensamento científico: análise a partir dos componentes cognitivos, metacognitivos e motivacionais. Educación Y Educadores, 21(3), 388–408. https://doi.org/10.5294/edu.2018.21.3.2

Edição

Seção

Pesquisa pedagógica